PHYSICAL REVIEW E VOLUME 53, NUMBER 5 MAY 1996

Monte Carlo simulations of random copolymers at a selective interface
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We investigate numerically using the bond-fluctuation model the adsorption of a ralBoropolymer at
the interface between two solvents. From our results we infer several scaling relations: the radius of gyration
of the copolymer in the direction perpendicular to the interfaRg,X scales withy, the interfacial selectivity
strength, aR,,= N”f(\/NX) wherew is the usual Flory exponent amdis the copolymer’s length; furthermore
the monomer density at the interface scaleg&sfor small y. We also determine numerically the monomer
densities in the two solvents and discuss their dependence on the distance from the interface.

PACS numbes): 61.25.Hq, 83.70.Hq

Copolymers at interfaces are very important in technicalattice. A move is taken into consideration only if it satisfies
applications. For example, the interface between two immisthe requirements of self-avoidance and of noncrossing of
cible polymer melts can be mechanically reinforced by dis-bonds. Furthermore, energetically unfavorable moves are sta-
solving copolymers into the systef,2]. In other applica- tistically permitted according to the usual Boltzmann factor.
tions the surface tension between two immiscible solvents, We obtain results for copolymers of lengths=16, 32,

e.g., oil and water, can be reduced by adding block copoly64, and 128 using systems with sizes 50 andH =100. An
mers consisting of a hydrophilic and a hydrophobic part.initial configuration is generated starting with the first mono-
Thus the adsorption of copolymers at interfaces has receivagier near the interface and then randomly adding the subse-
particular attentiorf3—7]. For diblock copolymers, the dif- quent monomers such that self-avoidance and noncrossing of
ference in the solubilities of the monomers favors the localbonds are obeyed. The energetic aspects of the interaction
ization of the copolymer at the interface, with each block inwith the solvents are then taken care of by the usual Boltz-
its favorable solvent. However, forandom copolymers mann factor; the monomer-monomer interaction is only ac-
frustrated situations may arise since the chain’s connectivitgounted for through the excluded-volume aspects. We let the
forces some monomers to stay in their unfavorable solventhain move for a long time according to the MC prescrip-
Using a Hartree-type approach Gae¢lal. [3] have studied tions, such that the chain relaxes to equilibrium. The aver-
the localization transition of an ideal random chain at anaged quantities that we will show below are then obtained
interface. Yeung, Balazs, and Jasngly have addressed the from such equilibrium configurations. We found numerically
guestion of correlations in th& andB distributions, a point the relaxation time(determined using the autocorrelation
investigated recently through computer simulations by Bal{function of the radius of gyratioRy and of itsz component
azset al. [7] in the context of copolymer brushes. In this Ry, [11]) to be around 50 000 Monte Carlo stelCS),
paper we study numerically under excluded volume condiwhere a MCS consists ® move attempts; we thus view the
tions a single random copolymer at an interface and we pagopolymer as having reached equilibrium after 200 000
particular attention to scalini8]. MCS. Averages are then calculated from the configurations

We use the bond-fluctuation mod@FM) [9,10] to per-  obtained in the subsequent 200 000 MCS. For each copoly-
form Monte Carlo(MC) simulations. In the BFM the poly- mer length we realized 100 independent runs.
mers obey the excluded-volume requirements, and the mo- Figure 1 shows the normalized probability of finding
tion occurs such that the bonds do not cross each other; segonomers ofA and ofB type at height. In this example the
Refs.[9,10] for details. Here we take a cubic box of size copolymer length ifN=128 and we have chosep~3.15.
LXLXH, with periodic boundary conditions in theand  Apart from the (expectedl symmetry between the plotted
y directions and two impenetrable surfaceszatO and curves, the figure shows that most of the monomers are lo-
z=H. We study the behavior of a single copolymer consistcated near the interface; the copolymer is thus adsorbed.
ing of N randomly chosen monomers Afand ofB type. We  Each of the two curves peaks near the interface, on the fa-
assume a symmetrical situation: the interaction parameter aforable side. The curves decay smoothly on the favorable
the monomers igkgT when immersed in their unfavorable side and sharply across the selective interface. There is evi-
solvent and zero otherwise. The solvent below the interfaceence of frustration in the form of a secondary peak in
(z=H/2) favors A-type monomers, and the solvent abovemonomer density on the unfavorable solvent side of the in-
the interface £=H/2+1) B-type monomers. Note that the terface. This situation arises because the covalent bonding of
interface is thus at=(H+1)/2. In each Monte Carlo step the chain forces some monomeshose neighbors are in
the chain moves by position changes of the monomeranajority of the other typeto be immersed in the “wrong”
which attempt nearest neighbor steps on the underlying cubisolvent. This situation is due to an energetic-entropic bal-

ance: configurations with monomers in the “wrong” solvent
are energy unfavorable but favorable in view of entropy.

*Permanent address: Institute of Physics, Academia Sinica, Evidently, in Fig. 1 the asymmetry of each curve with
Beijing, China. respect to the interface is related to the valueypfa fact

1063-651X/96/58)/55094)/$10.00 53 5509 © 1996 The American Physical Society



5510 BRIEF REPORTS

[ A o— N=16 ©
; B e N=32 +
0.16 N=64 ©
N=128 x
0.14 |
o.12 } i g 1E orox 0, Bpo,
| w £ g
g" x
0.1 R g, o
P mg R
0.08 [ %4 L,
2
0.06 | + @ o @
] x
0.04 i x  x x
1 0.1
0.02 | 4
G
0 .
0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000
z XN:/:

FIG. 1. The probability(normalized densily p of finding a
monomer ofA type (diamond$ or B type (crossey at heightz.
Here the copolymer length id=128 andy=3.15.

FIG. 3. Ryx)/RyA0) as a function of the scaling variable
JNy for different polymer lengths.

reminiscent of paramagnetism, where applying an externdl the dependence d?,, on x and hence display in Fig. 3
field increasegdecreasesthe numbers of spins parall@n-  Rg.(x)/RyA0) as a function of/Ny for differentN. Notice
tiparalle) to it. Here we determine the magnitude of the that (except for very largey) all data collapse into a single
asymmetry across the interface by evaluating curve. This demonstrates thRf,(x) scales withy/Ny for
small and moderately large. Scaling fails whery is very

H H/2 H
_ _ _ _ large, because then the copolymers are practically squeezed
M _ZZO |pa(2) = pe(2)] _ZZO Pa(Z) z=H2/2+1 Pa(2) on the interface, having th&-B covalent bonds at the inter-

face. In the region in which the curves collapse we observe a
constant regime for very smajll followed by a power-law
decay regime for moderate\Ny values. Setting
Ry(x)/RyA0)=f(\Ny) with f(y)=1 for y<y. and
Figure 2 shows the relation betwe®h and y for different  f(y)=y~ “ for y>y., we find from Fig. 3 that the crossover
copolymer lengthsN. Note the very small dependence of valuey, is roughlyy.~10. Furthermore, from a best fit to
M on N; the curves for differeniN almost coincide. As in the data in the power-law regime we obtain numerically for
paramagnetismyl is a linear function ofy for small y, and  the exponentr that «=1.112+0.10, i.e.,a/2=0.56+0.05.
reaches a constattiere unity due to normalizatipfior large ~ This result is in agreement with the scaling arguments of
X. Refs.[6,12], which predict thate should equal 2, where
We now turn to the question how the copolymer behavey is the usual Flory exponenty~0.588, for excluded-
around the interface. For this we compuirg,, the z com- volume chains. Scaling with/NX is consistent with the
ponent of the radius of gyration of the copolymer. Here"blob” picture of a random copolymer at an interfap@ 12].
Rszzzi'“zl(zi —2)?IN, wherez, is the z component of the A blob is a chain segment containimg(g>1) monomers,
ith monomer’s position and==N_,z /N. We are interested and thus has roughlg"/? monomers of one type in excess;

H/2

H
+ > pB<z>—Z§0 ps(2).

z=H/2+1
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FIG. 2. The dependence of the asymmetry paramigterEq.
(1), on yx for different polymer lengths.

FIG. 4. The densityg exactly at the interface vs the interfacial
selectivity strengthy for different polymer lengths.
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FIG. 5. (a) The total monomer density plotted as a function bf@,) x?”; see text for details. The parameter values aré= 32,

x=3.15;b: N=64, y=2.20;c: N=64, y=3.15;d: N=128, y=1.55;e: N=128, y=2.30;f: N=128, y=3.15. (b) Same aga) but plotted
semilogarithmically.
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the total number of blobs idl/g and their number at the [pa(2)+ps(2)1/po as a function of t—z)x?” with
interface depends odﬁx [12]. Zo=(H+1)/2 and pg=3{pa(H/2)+ pg(H/2)+ pa(H/2+1)
Another example of scaling is provided by the monomer+ pg(H/2+ 1)]}. For a series oN andx values we find that
density exactly at the interface=(H+1)/2. In our (dis- all data collapse to a single curve whgrlies in the power-

crete lattice model we thus compute law regime of Fig. 3. This implies the scaling relation
1 H H _ _ 2v
pe=3 pal | ool 1 | @ [PA(2)+ pa(2)]=podl (= 20)X*"]. 3

Equation(3) does not hold whery lies outside the power-
law regime. Figure &) displays the data of Fig.(8) in a
semilogarithmic plot. The appearance of two almost straight
L : : lines rules out a Gaussian behavior and suggests to approxi-
regime; here, howevep, is small and thus the relative error mate the wings 06 (y) by an exponential form. We find for
is rather large. For very large, ps gets to be independent of the wingsg(y) ~exp(ylyl), with y=0.10+0 02‘
)r;oggr;rt]s chrilnﬁngre thsiglzgusﬁtzhed ?:s tr;e Souvzf:fﬁéx the In conclusion, we have studied numerically the adsorption
B X Tegime ps XS P . of random copolymers at a selective interface. The main re-
ps~ x*, which is illustrated by the linearity of the data in the sults are as follows. For small and for moderately laygbe
Iog-llog plot of Fig. 4, From a best fit to the data in. this magnitudeM of the .asymmetry, as defined in Ed), grows
o E  oliean iy and s ndependent . FuthermoreR,
DS the radius of gyration in the direction perpendicular to the

=2y in the “blob” picture [6,12], i.e., taking the accepted . ) .
f~0.588 for excludepd volume chains g~ 1.1976. The dzri— interface scales aRy,~N f(‘/ﬁX)' The monomer density
ps at the interface, Eq3), scales ag?”; moreover, fory in

vation of 5=2v according to Refs(6] and[12] starts from the power-law regime the total monomer density obeys

the scaling of physical variables witi'?y. Hence the total , .
number of monomers at the interface obeys.pA(Z)ijB(z).ZPOQOZ_ZO'X2 ) whereg(y) is close to be-
ing exponential.

Ng=N*"7f(N¥2y), wheref(0)=1. Noting that for largey

In Fig. 4 we display in a log-log plgis as a function ofy for
different polymer length&. Again the data for differeni
coincide, possibly with the exception of the very small

N is proportional to N requires thatf(y)~y™, with This work was supported by the Deutsche Forschungsge-
1—v+m/2=1. Hencem=2v and Ng~Nx?”. Due to nor- meinschaf(SFB 60, by the Fonds der Chemischen Industrie
malization one findgs=Ng/N~ x?". and by PROCOPE, administrated by the DAAD. G.P. thanks

We conclude by showing that even the total monometthe Alexander von Humboldt Foundation for financial sup-
density scales with xy?*. In Fig. 5a we plot port.
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