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We investigate numerically using the bond-fluctuation model the adsorption of a randomAB copolymer at
the interface between two solvents. From our results we infer several scaling relations: the radius of gyration
of the copolymer in the direction perpendicular to the interface (Rgz) scales withx, the interfacial selectivity
strength, asRgz5Nn f (ANx) wheren is the usual Flory exponent andN is the copolymer’s length; furthermore
the monomer density at the interface scales asx2n for smallx. We also determine numerically the monomer
densities in the two solvents and discuss their dependence on the distance from the interface.

PACS number~s!: 61.25.Hq, 83.70.Hq

Copolymers at interfaces are very important in technical
applications. For example, the interface between two immis-
cible polymer melts can be mechanically reinforced by dis-
solving copolymers into the system@1,2#. In other applica-
tions the surface tension between two immiscible solvents,
e.g., oil and water, can be reduced by adding block copoly-
mers consisting of a hydrophilic and a hydrophobic part.
Thus the adsorption of copolymers at interfaces has received
particular attention@3–7#. For diblock copolymers, the dif-
ference in the solubilities of the monomers favors the local-
ization of the copolymer at the interface, with each block in
its favorable solvent. However, forrandom copolymers
frustrated situations may arise since the chain’s connectivity
forces some monomers to stay in their unfavorable solvent.
Using a Hartree-type approach Garelet al. @3# have studied
the localization transition of an ideal random chain at an
interface. Yeung, Balazs, and Jasnow@4# have addressed the
question of correlations in theA andB distributions, a point
investigated recently through computer simulations by Bal-
azset al. @7# in the context of copolymer brushes. In this
paper we study numerically under excluded volume condi-
tions a single random copolymer at an interface and we pay
particular attention to scaling@8#.

We use the bond-fluctuation model~BFM! @9,10# to per-
form Monte Carlo~MC! simulations. In the BFM the poly-
mers obey the excluded-volume requirements, and the mo-
tion occurs such that the bonds do not cross each other; see
Refs. @9,10# for details. Here we take a cubic box of size
L3L3H, with periodic boundary conditions in thex and
y directions and two impenetrable surfaces atz50 and
z5H. We study the behavior of a single copolymer consist-
ing ofN randomly chosen monomers ofA and ofB type. We
assume a symmetrical situation: the interaction parameter of
the monomers isxkBT when immersed in their unfavorable
solvent and zero otherwise. The solvent below the interface
(z<H/2) favorsA-type monomers, and the solvent above
the interface (z>H/211) B-type monomers. Note that the
interface is thus atz5(H11)/2. In each Monte Carlo step
the chain moves by position changes of the monomers,
which attempt nearest neighbor steps on the underlying cubic

lattice. A move is taken into consideration only if it satisfies
the requirements of self-avoidance and of noncrossing of
bonds. Furthermore, energetically unfavorable moves are sta-
tistically permitted according to the usual Boltzmann factor.

We obtain results for copolymers of lengthsN516, 32,
64, and 128 using systems with sizesL550 andH5100. An
initial configuration is generated starting with the first mono-
mer near the interface and then randomly adding the subse-
quent monomers such that self-avoidance and noncrossing of
bonds are obeyed. The energetic aspects of the interaction
with the solvents are then taken care of by the usual Boltz-
mann factor; the monomer-monomer interaction is only ac-
counted for through the excluded-volume aspects. We let the
chain move for a long time according to the MC prescrip-
tions, such that the chain relaxes to equilibrium. The aver-
aged quantities that we will show below are then obtained
from such equilibrium configurations. We found numerically
the relaxation time~determined using the autocorrelation
function of the radius of gyrationRg and of itsz component
Rgz @11#! to be around 50 000 Monte Carlo steps~MCS!,
where a MCS consists ofN move attempts; we thus view the
copolymer as having reached equilibrium after 200 000
MCS. Averages are then calculated from the configurations
obtained in the subsequent 200 000 MCS. For each copoly-
mer length we realized 100 independent runs.

Figure 1 shows the normalized probability of finding
monomers ofA and ofB type at heightz. In this example the
copolymer length isN5128 and we have chosenx53.15.
Apart from the ~expected! symmetry between the plotted
curves, the figure shows that most of the monomers are lo-
cated near the interface; the copolymer is thus adsorbed.
Each of the two curves peaks near the interface, on the fa-
vorable side. The curves decay smoothly on the favorable
side and sharply across the selective interface. There is evi-
dence of frustration in the form of a secondary peak in
monomer density on the unfavorable solvent side of the in-
terface. This situation arises because the covalent bonding of
the chain forces some monomers~whose neighbors are in
majority of the other type! to be immersed in the ‘‘wrong’’
solvent. This situation is due to an energetic-entropic bal-
ance: configurations with monomers in the ‘‘wrong’’ solvent
are energy unfavorable but favorable in view of entropy.

Evidently, in Fig. 1 the asymmetry of each curve with
respect to the interface is related to the value ofx, a fact
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reminiscent of paramagnetism, where applying an external
field increases~decreases! the numbers of spins parallel~an-
tiparallel! to it. Here we determine the magnitude of the
asymmetry across the interface by evaluating
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Figure 2 shows the relation betweenM andx for different
copolymer lengthsN. Note the very small dependence of
M on N; the curves for differentN almost coincide. As in
paramagnetism,M is a linear function ofx for smallx, and
reaches a constant~here unity due to normalization! for large
x.

We now turn to the question how the copolymer behaves
around the interface. For this we computeRgz , the z com-
ponent of the radius of gyration of the copolymer. Here
Rgz
2 5( i51

N (zi2 z̄)2/N, wherezi is the z component of the
i th monomer’s position andz̄5( i51

N zi /N. We are interested

in the dependence ofRgz on x and hence display in Fig. 3
Rgz(x)/Rgz(0) as a function ofANx for differentN. Notice
that ~except for very largex) all data collapse into a single
curve. This demonstrates thatRgz(x) scales withANx for
small and moderately largex. Scaling fails whenx is very
large, because then the copolymers are practically squeezed
on the interface, having theA-B covalent bonds at the inter-
face. In the region in which the curves collapse we observe a
constant regime for very smallx followed by a power-law
decay regime for moderateANx values. Setting
Rgz(x)/Rgz(0)5 f (ANx) with f (y)51 for y,yc and
f (y)5y2a for y.yc , we find from Fig. 3 that the crossover
value yc is roughly yc'10. Furthermore, from a best fit to
the data in the power-law regime we obtain numerically for
the exponenta thata51.11260.10, i.e.,a/250.5660.05.
This result is in agreement with the scaling arguments of
Refs. @6,12#, which predict thata should equal 2n, where
n is the usual Flory exponent,n'0.588, for excluded-
volume chains. Scaling withANx is consistent with the
‘‘blob’’ picture of a random copolymer at an interface@6,12#.
A blob is a chain segment containingg (g@1) monomers,
and thus has roughlyg1/2 monomers of one type in excess;

FIG. 1. The probability~normalized density! r of finding a
monomer ofA type ~diamonds! or B type ~crosses! at heightz.
Here the copolymer length isN5128 andx53.15.

FIG. 2. The dependence of the asymmetry parameterM , Eq.
~1!, on x for different polymer lengths.

FIG. 3. Rgz(x)/Rgz(0) as a function of the scaling variable
ANx for different polymer lengths.

FIG. 4. The densityrs exactly at the interface vs the interfacial
selectivity strengthx for different polymer lengths.
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FIG. 5. ~a! The total monomer density plotted as a function of (z2z0)x
2n; see text for details. The parameter values area: N532,

x53.15;b: N564,x52.20;c: N564,x53.15;d: N5128,x51.55;e: N5128,x52.30; f : N5128,x53.15. ~b! Same as~a! but plotted
semilogarithmically.
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the total number of blobs isN/g and their number at the
interface depends onANx @12#.

Another example of scaling is provided by the monomer
density exactly at the interfacez5(H11)/2. In our ~dis-
crete! lattice model we thus compute

rs5
1

2 FrASH2 D1rBSH2 11D G . ~2!

In Fig. 4 we display in a log-log plotrs as a function ofx for
different polymer lengthsN. Again the data for differentN
coincide, possibly with the exception of the very smallx
regime; here, however,rs is small and thus the relative error
is rather large. For very largex, rs gets to be independent of
x, as the chains are then squeezed on the surface. In the
moderatex regime rs scales with x as a power law
rs;xb, which is illustrated by the linearity of the data in the
log-log plot of Fig. 4. From a best fit to the data in this
regime we obtain numerically that the exponentb is
1.1460.06. This result can be compared to the expression
b52n in the ‘‘blob’’ picture @6,12#, i.e., taking the accepted
n'0.588 for excluded volume chains tob'1.176. The deri-
vation ofb52n according to Refs.@6# and @12# starts from
the scaling of physical variables withN1/2x. Hence the total
number of monomers at the interface obeys
Ns5N12n f (N1/2x), where f (0)51. Noting that for largex
Ns is proportional to N requires that f (y);ym, with
12n1m/251. Hencem52n andNs;Nx2n. Due to nor-
malization one findsrs5Ns /N;x2n.

We conclude by showing that even the total monomer
density scales with x2n. In Fig. 5~a! we plot

@rA(z)1rB(z)#/r0 as a function of (z2z0)x
2n with

z05(H11)/2 and r05
1
2$rA(H/2)1rB(H/2)1rA(H/211)

1rB(H/211)]%. For a series ofN andx values we find that
all data collapse to a single curve whenx lies in the power-
law regime of Fig. 3. This implies the scaling relation

@rA~z!1rB~z!#5r0g@~z2z0!x
2n#. ~3!

Equation~3! does not hold whenx lies outside the power-
law regime. Figure 5~b! displays the data of Fig. 5~a! in a
semilogarithmic plot. The appearance of two almost straight
lines rules out a Gaussian behavior and suggests to approxi-
mate the wings ofg(y) by an exponential form. We find for
the wingsg(y);exp(2guyu), with g50.1060.02.

In conclusion, we have studied numerically the adsorption
of random copolymers at a selective interface. The main re-
sults are as follows. For small and for moderately largex the
magnitudeM of the asymmetry, as defined in Eq.~1!, grows
linearly with x and is independent ofN. Furthermore,Rgz ,
the radius of gyration in the direction perpendicular to the
interface scales asRgz5Nn f (ANx). The monomer density
rs at the interface, Eq.~3!, scales asx2n; moreover, forx in
the power-law regime the total monomer density obeys
rA(z)1rB(z)5r0g(uz2z0ux2n) whereg(y) is close to be-
ing exponential.
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